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ABSTRACT 

The International Space Station (ISS) relies on the Active Rack Isolation System 
(ARIS) as the central component of an integrated, station-wide strategy to isolate 
microgravity space-science experiments. ARIS uses electromechanical actuators to isolate 
an International Standard Payload Rack (ISPR) from disturbances due to the motion of the 
ISS. Disturbances to microgravity experiments on ARIS-isolated racks are primarily 
transmitted via the ARTS power and vacuum umbilicals. Recent experimental tests indicate 
that these umbilicals resonate at frequencies outside the A R I S  controller’s bandwidth, at 
levels of potential concern for certain microgravity experiments. Reduction in the 
umbilical resonant frequencies could help to address this issue. 

This report develops equations for the in-plane deflections and flexibilities of an 
idealized umbilical (thin, flexible, cantilever beam) under end-point, in-plane loading 
(inclined-force and moment). The effect of gravity is neglected due to the on-orbit 
application. The analysis assumes an initially straight, cantilevered umbilical with uniform 
cross-section, which undergoes large deflections with no plastic deformation, such that the 
umbilical terminus remains in a single quadrant and the umbilical slope changes 
monotonically. The analysis is applicable to the ARIS power and vacuum umbilicals, 
under the indicated assumptions. 
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NOMENCLATURE 

Lower case 
CT 
P 

ST 
Y 
Yc 

ZC 

ai, aij 
Pi 

rl 
5 
5 C  

4 

S 

z 

Cosine of angle 5 
Modulus of elliptic integral 
Distance along umbilical from cantilevered end 
Sine of angle 6 
Position coordinate 
Position coordinate of umbilical terminus (point C )  
Position coordinate 
Position coordinate of umbilical terminus (point C )  
Normalized loads 
Flexibility integrals 
Shape kernel 
Angle of umbilical tangent at arbitrary point R 
Angle of umbilical tangent at terminal point C 
Amplitude of elliptic integral 

Integration constant 
Young’s modulus of elasticity 
Flexural rigidity 
Legendre’s incomplete elliptic integral of the 1 St kind 
Area moment of inertia with respect to beam neutral axis 
Legendre’s complete elliptic integral of the 1’‘ kind 
Umbilical length 
Internal moment 
Terminally applied moment about the x-axis 
Terminally applied force, y-direction 
Terminally applied force, z-direction 
Arbitrary point along umbilical 

INTRODUCTION 

The Active Rack Isolation System (ARIS) serves as the central component of an 
integrated, station-wide strategy to isolate microgravity space-science experiments on the 
International Space Station (ISS). ARIS uses eight electromechanical actuators to isolate 
an International Standard Payload Rack (ISPR) from disturbances due to the motion of the 
ISS; eleven ARIS racks are being developed for the ISS. Disturbances to microgravity 
experiments on ARIS-isolated racks are primarily transmitted via the (nominally thirteen) 
ARIS umbilicals, which provide power, data, vacuum, cooling, and other miscellaneous 
services to the experiments. The two power umbilicals and, to a lesser extent, the vacuum 
umbilical, serve as the primary transmission paths for acceleration disturbances. 
Experimental tests conducted by the ARIS team (December 1998) [ 13 indicate that looped 
power umbilicals resonate at about 10 Hz; unlooped power umbilicals resonate at about 4 
Hz. In either case, the ARIS controller’s limited bandwidth (about 2 Hz) admits only 
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limited active isolation at these frequencies. Reduction in the umbilical resonant 
frequencies could help to address this problem. 

Analytical studies of the nonlinear bending and deflection of a flexible cantilever beam 
(originally horizontal) have been conducted for a variety of loading conditions, including 
concentrated terminal transverse (vertical) loading [2, 3, 4, 51; uniformly distributed 
vertical loading [2, 6,  71; uniformly distributed normal loading [8]; concentrated terminal 
inclined loading [9, lo]; multiple concentrated vertical loads [ 1 11; and concentrated 
terminal vertical and moment loading [ 1 13. (See the thesis of Christopher Rojahn [ 121 for a 
thorough summary of the history up to 1968.) Typical exact solutions involve complete 
and incomplete elliptic integrals [e.g., 2, 11,4,5]. 

Equations for the case of general terminal in-plane loading (Le., including both 
inclined-force and moment loads) have apparently not been determined. These and the 
corresponding in-plane flexibility (or stifhess) equations would be of particular interest 
toward umbilical design for microgravity-isolation purposes. The equations could be used 
to help optimize umbilical flexibilities and resonant frequencies for microgravity 
applications. 

This paper develops equations for the in-plane deflections and flexibilities of an 
idealized umbilical (thin, flexible, cantilever beam) under terminal in-plane loading 
(inclined-force and moment). The effect of gravity can be neglected due to the on-orbit 
application. The analysis is applicable to an initially straight, cantilevered umbilical with 
uniform cross-section, which undergoes large deflections with no plastic deformation, such 
that the umbilical terminus remains in a single quadrant and the umbilical slope changes 
monotonically. The analysis would be applicable to the AFUS power and vacuum 
umbilicals, under the indicated assumptions. 

PROBLEM STATEMENT 

Consider an idealized umbilical of length L with end-points 0 and C and arbitrary 
intermediate point R (Figure 1). Let R be located at distance s along the umbilical, 
measured from the cantilevered end, with coordinates (z, y ) ;  the coordinates of point C are 
( zc ,yc) .  The coordinates have been chosen to be consistent with the coordinate system in 
use for the existing analyses of ARIS, for dynamic-modeling and controller-design 
purposes; point 0, then, is the umbilical point-of-attachment to the ISS, and point C is the 
point-of-attachment to the ISPR. Let 5 be the angle, at R, of the tangent to the umbilical; 
and let 6, represent the end-point angle, at C. Assume a specified flexural rigidity EZ. 

T h s  paper accomplishes the following hdamental  tasks: (1) to derive equations for 
the umbilical length, coordinates at arbitrary point R, and terminal coordinates (at C); and 
(2) to use these equations to derive usefbl equations for the six in-plane umbilical 
flexibilities. These nine equations will be expressed in terms of the angle 5, , and of the in- 
plane loads at C. These loads are as follows: forces Qy and Q, , in the positive y- and z- 

directions, respectively, and counter-clockwise (positive) moment M, , about the positive 
x-axis. 
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Y 
Figure I. Flexible Umbilical under End Loading 

EQUATIONS OF UMBILICAL GEOMETRY 

(1) d5 
ds 

At R the moment equation is M = EI - = M ,  + Q, (ye - U) - ey (2, - z )  . 

dY Differentiating twice, observing that - = -sin 5 
ds 
dz and - = c o s 5 ,  
ds 

and using the shorthand notation s5 = sin 5 and cs = cos 6 , one obtains 

d25 Q, QY - = -ss +-cs. 
ds2 EI EI 

1 
Integration of Equation (4) yields - [ 3) = - (QysF, - Qzcg)+ C, , 

2 ds EI 

(4) 

where C, is an integration constant. At point C, Equation (1) becomes 
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Applying this boundary condition to Equation (9, one has 

d5 so that Equation (5) can now be solved for - : 
ds 

2QY where the radicand (9) 

Equation (8) applies under the assumption that the radicand 77 is nonnegative, or 
d5 equivalently, that - is nonpositive. 
ds 

From Equation (8)’ ds = - q - ‘ I 2  4 7 

which can be integrated to yield an expression for the umbilical length: 

From Equation (2), (12) 

so that (13,141 

Likewise, Equation (3) yields z = jixq-1’2 ccd5 and z ,  - - 6 q-1/2ccdc. (15,161 

Together, Equations (1 1) and (1 3) through (16) describe the umbilical geometry as 
functions of the terminal angle 5, ; terminal loads Qy , Q, , and M ,  ; and integration-, or 
“shape” kernel 77. 

VALIDATION (SPECIAL CASES) 

The umbilical geometric equations, (1 1) and (1 3) through (1 6), can be used to derive 
equations for umbilical in-plane flexibilities. First, however, it will be shown as a check of 
the mathematics that the geometric equations simplify in some special cases to known 
forms [ 1 13. 

Horizontal Cantilever with Vertical Point Load at Free End 

Consider the case where Qy and M ,  are both zero; this is Frisch-Fay’s “basic strut” 
[ll,p.41]. 
Define, for convenience, P, = -e,. (17) 
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112 

Equation (1 1) becomes 

which can be rewritten as L = )-112dc. 
2 

Let 

- and select $I such that 

p=sin- 5, 

psin9 =sin- 5 
2 

3 
L 

1 5  Taking the differential of the above, p cos + d$ = -cos - d{ . 

From Equations (20) and (21), sin C - sin 5 = p2 (1 - sin 9); 

as 5 varies fiom cc to 2n,+ varies fiom - to n. In this range, 

t 

2 2  
2 5  

2 2 
n 
2 

n 

so that 

/ 2  
(24925) -cos+=(1-sin2+r” and -cos-=(l-p2sin2$y 5 , 

2 
- ~ P c o s + ~ +  dg = 

(1 - p2 sin2 +)’” 
Finally, using Equations (23) and (26) in Equation (19), and simplifying, one obtains the 
following result: 

(27) 
1 
k L = - W )  9 

where 

K ( p )  and F (pl +), respectively, are Legendre’s complete and incomplete elliptic integrals 
ofthe l”kind[l l ,p .  51. 

Horizontal Cantilever with Inclined Point Load at Free End 

Consider next the case where Q, and M ,  are both zero. Equation (1 1) becomes 

Introduce + and positive parameterp such that p2 = (1 -sin G,)/ 2 

and 
112 

1-sin5 
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Squaring the above yields 
Taking the differential, 

1 -s inc=2p2 sin2 4 .  
cos<d{ =-4p2 sin@cos@d@, 

so that 
-4p2  sin$cos+ 

d t  = 4 * 
(I -sin2 {)’I2 

From Equation (33) one obtains 
Equations (33) and (36) together yield 

1 + sin 5 = 2(1- p2 sin2 4). 

(1 - sin2 = 2 p  sin 4 (1 - p2 sin2 + f i 2 .  

(33) 
(34) 

. Using Equation (37) in (35) yields As { varies from cc to 27r, 4 vanes from - to - n 1 
2 PJZ 

- 2 p  COS 4 d4 
d{ = 

(1-p’ sin2 +)’ I2  

Obtaining expressions for sin 5 ,  and sin 5 from Equations (3 1) and (33), respectively, and 
substituting from these and Equation (35) into Equation (30), one obtains the following 
result: 

where 

In terms of elliptic integrals, 

112 

L = [ E )  [I2(l-p2 sin2+)-’”d$ 

the solution previously reported in [ 1 11, page 42. 

EQUATIONS OF UMBILICAL FLEXIBILITY 

The Nature of the Dependencies on Flexural Rigidity EZ 

(39) 

It will now be shown that, for constant values of L ,  c,, y ,  , and z, @e., umbilical 

length and terminal geometry), the following expressions are also constants: -, - , and Qy Q, 
EI E1 

- M x  . These facts will have important implications for umbilical shapes and flexibilities. 
EI 

Define the following, for two umbilicals (i = 1,2) having the same flexural rigidity and 

(42) 

terminal angle, but with but different terminal loads: 
2 x  

Li = L(qi) = I qf1I2d{ > 0, 
5c 
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and 

where 

for 

(44) 

Qy; ali =- 
EI ’ 

az j  =- 
EI ’ 
Qzi (47) 

(48) M X i  and a3i = -. 
EI 

The terminal angle is assumed to be arbitrary, fixed between x and 2x. Then the following 
obtains: 

(49) 
ZCI ==c2 

The former “if-and-only-if’ statement is true based on the orthogonality of the constant, 
cosine, and sine functions. As for the latter, using Equation (49, 

all = a 1 2 9  

a 2 1  = 0 1 2 2 ,  and (50) 

(5  1) 

2 2 
a31 -a l lS5c  -a21ccc = a 3 2  -a12s6c - a 2 2 c 5 c *  

2 2 

rll(5) = r12 (5) lh 5, 5 2 x  e 

The third right-hand-side equation will be true if and only if a 3 1  = ~ ~ 3 2 ,  

, and - M x  are Qy Qz since the first two right-hand-side equations must hold. Since -, - 
EI EI EI 

constants (for fixed umbilical length and terminal geometry), changing the flexural rigidity 
by some factor y changes all of the terminal loads by the same factor. Further, from 
Equations (1 3) and (1 5 )  the umbilical shape will also remain unchanged. The implications 
for in-plane umbilical stifhesses will be explored in the next section. 

Basic Flexibility Equations 

For given terminal geometry (4 ,  , yc , and z, ), Leibnitz’ Rule can now be applied to 
Equations (l l) ,  (14), and (16) to yield expressions for the six in-plane flexibilities. 
Applying Leibnitz’ Rule to Equations (14) and (16), one obtains the following initial 
expressions for the flexibilities: 
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and 

where 

and ~ 1 = c S ~ Q y  +scCQz- (59) 
The partial derivatives on the right-hand-sides of Equations (52) through (57) can be found 
by applying Leibnitz' Rule to Equation (1 1)' to yield the following: 

and 

Substituting from Equations (60) through (62) into Equations (52) through (57)' one finally 
obtains the desired expressions for the flexibilities. For example, substituting from 
Equation (60) into Equation (52) yields 
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Note that the expression in the curly brackets is invariant with EL Corresponding 
expressions for the other flexibilities can be found in similar manner; each will have a 
similar form [see Equations (75) through (80) below.] The flexibilities, then, are all 
inversely proportional to the flexural rigidity. 

Simplified Flexibility Equations 

For convenience define the following normalized loads and flexibility integrals: 
Q Y  

QZ 

011 =- 

012 =- 

EI ’ 

EI ’ 
a3 =-y -M* 

a 4 = - = c  c1 a + s S c a 2 ,  

EI 

E1 “ ’ 

where q = 2a, (sc - sS, )- 2 a 2  (cc - ccc )+ ai. 
Using these symbols the in-plane flexibility equations are as follows: 
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and 

where a 3  and the square-bracketed expressions are all invariant with EI. This means 
physically that changing the flexural rigidity by some factor y changes all of the in-plane 
stiffhesses by the same factor. 

IMPLICATIONS FOR UMBILICAL, DESIGN 

The foregoing equations can be used as an aid for designing umbilicals to minimize 
stiffness. First, as previously noted, each of the flexibility equations can be expressed in a 
form showing it to be inversely proportional to the flexural rigidity [Eqs. (75) through 
(80) 3. Consequently, reductions in flexural rigidity will produce proportional reductions in 
all in-plane stiffnesses. Second, it was shown that for a fixed umbilical geometry, changes 
in flexural rigidity will produce proportional changes in all of the terminal (in-plane) loads. 
Third, for given umbilical length L, and end-point conditions c,, z, , and y E  , Equations 
(1 l), (14), and (16) can be solved for the loads Qy , Q, , and M ,  . These loads can be 
determined and used iteratively in Equations (75) through (80) to maximize umbilical 
flexibilities (or, equivalently, to minimize the corresponding stiffhesses) using L as a 
parameter. And fourth, the umbilical designer can use the preceding equations to 
determine optimal L, 6, combinations. Although the angle 6, is fixed at about 225” for 
ARIS (in the “home,” or centered, position); L, 6, optimization could suggest better angles 
for future designs. 

CONCLUSION 

In summary, this paper presented equations for the shape and flexibility of an umbilical 
on ,orbit (i-e., such that gravity can be neglected), under terminal in-plane loading 
conditions of even sufficient magnitude to cause large deformations. The umbilical was 
assumed to be initially straight, to have a uniform cross-section, and to undergo no plastic 
deformation. All in-plane stiffhesses were shown to be proportional to the flexural rigidity 
EI. An approach was offered for using umbilical length and terminal geometry (end-point 
locations and slopes) to optimize these umbilical stifhesses. The basic equations were 
shown to reduce to previously published results for special loading conditions. 
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